Bjorner and Brenti, Selected Chapter 2 Notes

نویسنده

  • Esther Banaian
چکیده

References for these notes are Sections 2.7 and 2.8 as well as Appendicies A2.3, A2.4, and A2.5. of Bjorner and Brenti. There are several supplementary sources listed at the end. Section 2.7 explores the combinatorial structure of the interval between two elements of a coxeter group W , or more generally of a quotient W J . First of all, Corollary 2.5.6 assures us that every maximal chain in [w, u] is of the same length. This allows us to parametrize (if I am using that word correctly) the maximal chains by a set of k tuples, λ(m) = (λ1(m), . . . , λk(m)) for every maximal chain m, and where k = `(w, u) = `(w) − `(u). Given a reduced expression of w = s1s2 · · · sq and a maximal chain w = x0 .x1 . · · ·.xk−1 .xk = u, we know by the strong exchange property (and perhaps from the chain property), that x1 = s1 · · · ŝi · · · sq, and in general xj = s1 · · · ŝi1 · · · ŝij · · · sq (and we potentially could have deleted s1 and/or sq at any stage.) Then, λ(m) will record the index of the deleted generators of w in the order they are deleted. That is, if x1 = s1 · · · ŝi · · · sq, then λ(m)1 = i, and if xj = s1 · · · ŝi1 · · · ŝij · · · sq, then the first j positions of λ(m) will have i1, . . . , ij in the order they were deleted. For an example that may make more sense than the definition, consider maximal chains in the full Bruhat order of S3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distance 2 Permutation Statistics and Symmetric Functions

This paper is presented as an undergraduate honors thesis by Christopher Severs under the supervision of Professor Jeffrey Remmel at UCSD. The aim of the project was to read material about permutation statistics and generating functions for the ring of symmetric functions and then address a problem not covered in the literature to date. In working on this project the author gained a much better...

متن کامل

Natural Kinds, Evidence, and Randomness in Health Outcomes Research

............................................................................................................................................4 CHAPTER 1: WHAT’S THE PROBLEM? .........................................................................................7 THE NEED FOR MORE AND BETTER HEALTH OUTCOME INFORMATION ................................................7 WHAT’S SO GREAT ABOUT RANDO...

متن کامل

Diego Elements of Hilbert Space and Operator Theory with Application to Integral Equations

Preface These lecture notes present elements of Hilbert space and the theory of linear operators on Hilbert space, and their application to integral equations. Chapter 1 reviews vector spaces: bases, subspaces, and linear transforms. Chapter 2 covers the basics of Hilbert space. It includes the concept of Ba-nach space and Hilbert space, orthogonality, complete orthogonal bases, and Riesz repre...

متن کامل

The Role of Mathematics on Human Structure

This book explores the mathematical view of selected body systems and organs and as claimed by its author, “it has an objective to facilitate modern treatment with mathematical precision.”The author, Dr. Adhikari has PhD in mathematics and is the Head of the Institution and Department of Mathematics, Ghusuri Uchcha Madhyamic Vidyalaya, West Bengal, India. The motivation of the author in writing...

متن کامل

The Ricci Flow: An Introduction

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017